Activation of Au/TiO2 catalyst for CO oxidation.
نویسندگان
چکیده
Changes in a Au/TiO(2) catalyst during the activation process from an as-prepared state, consisting of supported AuO(x)(OH)(4-2x)(-) species, were monitored with X-ray absorption spectroscopy and FTIR spectroscopy, complemented with XPS, microcalorimetry, and TEM characterization. When the catalyst was activated with H(2) pulses at 298 K, there was an induction period when little changes were detected. This was followed by a period of increasing rate of reduction of Au(3+) to Au(0), before the reduction rate decreased until the sample was fully reduced. A similar trend in the activation process was observed if CO pulses at 273 K or a steady flow of CO at about 240 K was used to activate the sample. With both activation procedures, the CO oxidation activity of the catalyst at 195 K increased with the degree of reduction up to 70% reduction, and decreased slightly beyond 80% reduction. The results were consistent with metallic Au being necessary for catalytic activity.
منابع مشابه
Influence of TiO2 bulk defects on the CO adsorption and CO oxidation on Au/TiO2 – Electronic metal-support interactions (EMSI) in supported Au catalysts
Electronic metal-support interactions (EMSI) are demonstrated to severely affect the CO oxidation activity and the CO adsorption properties of Au/TiO2 catalysts. Bulk oxygen vacancies, generated by a strongly reductive pre-treatment of Au/TiO2 at elevated temperature in 10% CO/N2, significantly lower the catalytic activity for CO oxidation at 80°C. With time on stream, the activity slowly incre...
متن کاملCO Oxidation at the Au/TiO2 Boundary: The Role of the Au/Ti5c Site
Density functional theory is used to determine the reaction mechanisms of CO oxidation and the active oxygen species on a Au/TiO2 model catalyst. The model consists of a Au rod supported along the TiO2 [11̅0] direction of the TiO2(110) surface. An interfacial Au/Ti5c site at the interface boundary is identified to be particularly active toward O2 adsorption and dissociation. At this site, O2 dis...
متن کاملMechanistic interpretation of CO oxidation turnover rates on supported Au clusters
0021-9517/$ see front matter Published by Elsevier doi:10.1016/j.jcat.2011.09.015 ⇑ Corresponding author. Fax: +1 510 642 4778. E-mail address: [email protected] (E. Iglesia). 1 Present address: Institute of Catalysis and Petroche 28049 Madrid, Spain. 2 Present address: Chevron Corporation, Richmond, Kinetic and isotopic data are used to interpret the mechanistic role of gaseous H2O molecule...
متن کاملStructure sensitivity of CO oxidation over model Au/TiO2 catalysts
Model catalysts of Au clusters supported on TiO2 thin films were prepared under ultra-high vacuum (UHV) conditions with average metal cluster sizes that varied from ∼2.5 to ∼6.0 nm. The reactivities of these Au/TiO2 catalysts were measured for CO oxidation at a total pressure of 40 Torr in a reactor contiguous to the surface analysis chamber. Catalyst structure and composition were monitored wi...
متن کاملCalculations of CO Oxidation over a Au/TiO2 Catalyst: A Study of Active Sites, Catalyst Deactivation, and Moisture Effects
The reaction mechanism of CO oxidation on Au/TiO2 catalysts remains elusive. Here, we employ density functional theory calculations to gain an understanding of several important aspects of the system, including CO adsorption, the active oxygen species, catalyst deactivation, and the promoting effect of moisture on catalytic activity. Distinct from previous theoretical studies, which tend to add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 20 شماره
صفحات -
تاریخ انتشار 2005